Fast and Stable Approximation of Analytic Functions from Equispaced Samples via Polynomial Frames

نویسندگان

چکیده

Abstract We consider approximating analytic functions on the interval $$[-1,1]$$ [ - 1 , ] from their values at a set of $$m+1$$ m + equispaced nodes. A result Platte, Trefethen & Kuijlaars states that fast and stable approximation samples is generally impossible. In particular, any method converges exponentially must also be ill-conditioned. prove positive counterpart to this ‘impossibility’ theorem. Our ‘possibility’ theorem shows there well-conditioned provides exponential decay error down finite, but user-controlled tolerance $$\epsilon > 0$$ ϵ > 0 , which in practice can chosen close machine epsilon. The known as polynomial frame or extensions . It uses algebraic polynomials degree n an extended $$[-\gamma ,\gamma ]$$ γ $$\gamma 1$$ construct via SVD-regularized least-squares fit. key step proof our main new maximal behaviour simultaneously bounded by one nodes $$1/\epsilon $$ / show linear oversampling, i.e. $$m = c \log (1/\epsilon ) / \sqrt{\gamma ^2-1}$$ = c n log ( ) 2 sufficient for uniform boundedness such This aside, we impossibility theorem, possibility (and consequently approximation) essentially optimal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples

It is shown that no stable procedure for approximating functions from equally spaced samples can converge exponentially for analytic functions. To avoid instability, one must settle for root-exponential convergence. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992.

متن کامل

Impossibility of Approximating Analytic Functions from Equispaced Samples

It is shown that no stable procedure for approximating functions from equally spaced samples can converge geometrically for analytic functions. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992. In a nutshell, you can't beat Gibbs and Runge. Monday December 14 2009 4:30 PM Building 4, Room 370 Refreshments are available in Building 2, Room ...

متن کامل

On the Fast Growth of Analytic Functions by Means of Lagrange Polynomial Approximation and Interpolation

The present paper is concerned with the fast growth of analytic functions in the sets of the form {z C : φK(z) < R} (where φK(z) is the Siciak extremal function of a compact set K) by means of the Lagrange polynomial approximation and interpolation on K having rapidly increasing maximum modulus. To study the precise rates of growth of such functions the concept of index has been used.

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Polynomial operators for spectral approximation of piecewise analytic functions

We construct a sequence of globally defined polynomial valued operators, using linear combinations of either the coefficients in the orthogonal polynomial expansion of the target function with respect to a very general mass distribution μ or the values of the function at suitable points on [−1, 1], so that the degree of approximation by these operators globally is commensurate with the degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2022

ISSN: ['0176-4276', '1432-0940']

DOI: https://doi.org/10.1007/s00365-022-09593-2